
Autonomous Indoor Mapping Robot using ROS

Nishad Milind Rajhans
Department of Mechanical engineering

MITSOES
MIT Art, Design & Technology

University
Pune,Maharashtra

nishad07112000@gmail.com

Ayush Giri
Department of Mechanical engineering

MITSOES
MIT Art, Design & Technology

University
Pune,Maharashtra

aayushg2001@gmail.com

Kalpesh Kolte
Department of Mechanical engineering

MITSOES
MIT Art, Design & Technology

University
Pune,Maharashtra

kalpeshkolte1@gmail.com

Gufran Momin
Department of Mechanical engineering

MITSOES
MIT Art, Design & Technology

University
Pune,Maharashtra

gufranmomin1234@gmail.com

Bhumeshwar Patle
Department of Mechanical engineering

MITSOES
MIT Art, Design & Technology

University
Pune,Maharashtra

balu_patle@rediffmail.com

Praveen Kumar Bhojane
Department of Mechanical engineering

MESCOE
MES Wadia College of Engineering

Pune,Maharashtra
praveenkumar.bhojane@mituniversity

.edu.in

Abstract—The concept of mobile robots has always been the
prime topic of interest among the community of the roboticist
However, the idea of engineering a mobile robots robot that can
display indoor mapping and navigation, The current robots that
we find are made for only a particular task orientation and are
not user friendly as well as they also lack the ability of flexibility
in the development of the robot, The purpose of this research
thus involves developing and fabrication of the highly user-
friendly and open source flexible interface of ROS(Robotic
Operating System) which can integrate a wide range of sensors
and can perform various operation as well as functions very
efficiently and it takes the shortest time to cover (i.e.) Path
planning, In the indoor environment, It also is the combination
of A* algorithm into the robot automation firmware using
obstacle avoidance, and thus every decision is unique and
optimized. The experimental and simulation results are
validated here to show the effectiveness of the A* algorithm.

Keywords—UGVs, ROS (Robotic Operating System), Path
planning, mobile robot navigation, obstacle avoidance, indoor
mapping, A* algorithm

I. INTRODUCTION

Robotics constitutes a significant subfield within the
discipline of mechatronics engineering. Robotics
encompasses various aspects, including the strategic
formulation, conceptualization, physical realisation,
functional execution, and practical use of robotic systems. A
robot is a machine, specifically one that can be programmed
by a computer to execute a set of intricate activities
autonomously. In the manufacturing sector, robots are
commonly employed for various tasks such as the creation,
finishing, transfer, and assembly of components. Various
forms of robots exist, including drones. The six most
prevalent categories of robots are autonomous mobile robots
(AMRs) [1], automated guided vehicles (AGVs) [2],
articulated robots, humanoids, industrial robots, and hybrids.
Robotics is an engineering discipline concerned with the
development, design, and operation of robots for the purpose
of automation.

It is also associated with the study and implementation of
robotics, encompassing the construction of robots through the
integration of diverse technologies and their utilisation in our
daily activities. The field of robotics presents significant
prospects for future advancements. Robotic systems find
extensive utilisation across diverse domains, serving a
multitude of objectives. Presently, their deployment is
particularly prominent in hazardous settings, encompassing

tasks such as inspecting radioactive substances, detecting and
neutralising explosive devices, as well as facilitating
manufacturing operations. Additionally, robots are employed
in environments that are inhospitable to human presence,
such as outer space, underwater realms, extreme heat
conditions, and the management and confinement of perilous
materials and radiation. Robots possess the capacity to
assume various physical manifestations, with certain models
specifically designed to closely resemble the human form.
This facilitates the integration of robots in specific tasks that
typically involve human-like replication. These robots
endeavour to imitate many human activities [2].

A. Challenges and Motivation

With the due research done, we came to know there is not
much evidence of using the A* algorithm in the robot with
ROS and implementing that in the mobile robot navigation
the main objective is to optimize path length and
navigational time and find the shortest distance, This was a
challenging task to implement (Robotic operating system)
with the A* algorithm because the method was unknown
and we had to find many different innovative ways to
accomplish the task and we are successful in making that,
There are various parameter for the A* algorithm to
inculcate in our research.

The 1st section contains information on robotics, its uses,
and its application, the 2nd section contains and information
about the navigation and mapping of the mobile robot
including the self-localization and mapping. The 3rd section
of the research paper consists of the path planning of the
robot using the A* algorithm and integrated with the ROS
(Robotic Operating System) and the detailed information on
the robot construction with the software used in the
simulation it also consists which path planning algorithm
(A* algorithm) used in the indoor environment. 4th section
consists of the simulation and analysis of the robot in the
different indoor environments in using A* path planning
and ROS architecture with different parameters are taken
into consideration having graphical and statistical data. 5th

section consists of the simulation results during the
simulation of the robot in the indoor environment using
ROS and the A* algorithm. 6th section consists of all the
research papers that we have gone through and had some
useful insights during our research.

II. MOBILE ROBOT NAVIGATION

The field of autonomous mobile robotics places significant
emphasis on control systems and navigation as primary areas
of concern. The system has components for hardware circuit
design, control software, and upper computer software. The
velocity and current control of DC motors have been
observed in lesser computer systems. The navigation pack
holds significant importance and possesses considerable
power inside the framework of the ROS (Robotic Operating
architecture) architecture. The navigation system employed
in the autonomous car [3]. As depicted in Figure 1, the
comprehensive structure of the navigation and Path planning
involves determining the most efficient route considering the
surrounding environment and the presence of obstacles that
the robot must navigate. There are two primary categories of
obstacles: static obstacles, which remain stationary, and
dynamic obstacles, which are subject to movement. Upper
computer interaction primarily facilitates human interaction,
machine interaction, remote control, and data
communication. The navigation stack operates at a basic
conceptual level by receiving input from the odometry and
sensor streams.

In order to ensure accurate navigation, several prerequisites
must be met for the mobile base to receive appropriate
velocity commands. Firstly, the robot must be utilising the
ROS software framework. Additionally, the tf transform tree
must be properly established. Furthermore, the publisher data
should be transmitting the correct messages. Lastly, the ROS
configuration should be tailored to accommodate the shape
and dynamics of the robot, enabling it to operate at an optimal
level. The hardware requirements of the navigation stack are
specifically designed for wheeled robots with differential
drives. It implies that the mobile base may be controlled by
transmitting velocity signals. Additionally, the navigation
stack necessitates the presence of a planar laser, which should
be positioned on the mobile base. The laser in question is
utilised for the purposes of map construction and localization.
The navigation stack was originally devised for
implementation on a square robot, therefore yielding optimal
performance on robots of all shapes and sizes. However,
while employing this navigation stack on larger rectangular
robots within confined areas such as entrances, certain
limitations may arise [3].

 Fig 1 Navigation Stack

A. Self-localization

The expeditious execution of a comprehensive methodology
for a robotic system to achieve self-localization within an
indoor setting that may be represented as a basic polygon. As
depicted in Figure 2, the robot's sole source of information
consists of a polygon map and sensor data obtained from a
range detecting device. It is assumed that in this manner, the
robot possesses access to its localised visibility polygon. The
iterative approach we employ involves consistently moving

towards the nearest point where the robot can ascertain the
elimination of at least one potential location in which it may
be situated [4].

 Fig 2 Self Localization

B. Map Building and Map Interpretation

The process of mapping the mobile robot is a fundamental
aspect of achieving effective navigation in the field of mobile
platform technology. Figure 3 illustrates that localization is a
fundamental and crucial undertaking for attaining a high
degree of autonomy in robot navigation and ensuring
resilience in vehicle positioning. The field of robotic mapping
and map interpretation is closely associated with cartography,
employing techniques and computational methods to
construct trajectory maps that accurately represent reality and
effectively convey spatial information. [4].

 Fig 3 Robot Mapping

III. PATH PLANNING OF MOBILE ROBOTS USING A*
AND ROS

Path planning, also called motion planning, is a
computational problem that involves determining a set of
feasible configurations to move an object between two
locations. The objective of a path-planning algorithm is to
determine a geometric trajectory that links the robot's present
position to the desired destination, utilising a given map.
Moreover, mobile robots working in unorganised settings or
service and companion machines often lack comprehensive
or complete prior understanding of the setting. Additionally,
the context in which these robots operate is not static,
meaning that while in motion, the robot may come across
other robots, human beings, or companion animals.

Consequently, its performance of tasks is frequently
influenced by unpredictability. Local obstacle handling,
which includes obstacle detection and avoidance, is also
required to achieve collision-free path planning. Robots may
now detour around barriers utilizing modern approaches by
quantitative measurement of the dimensions of obstacles [5].
In order to simulate the robot, the proposed algorithms were
implemented in the Robot Operation System (ROS) as shown
in the (Fig.4) the An free to use, meta-operating system
designed for robotic platforms. The operating system, or OS,
offers a range of services that are typically anticipated, such
as hardware conceptualization, control over low-level
devices, implementation of frequently utilised functionalities,
inter-process communication through message-passing, and
managing packages. More importantly, ROS (Robotic
Operating System) has plenty of open-source packages
including sensor drivers, navigation tools, environment
mapping tools, path planning tools, communication and
visualization tools, and many others that ultimately rigidifies
the robot software network. The robot has a 360 Lidar module
which can sense and give proper instructions to the micro-
controller of that of the obstacle within the alarming range of
the robot it also has a Bluetooth module for the
communication of the instructions that the robot needs to
accomplish and it has the encoder. The unmanned vehicle
autopilot software suite in the Gazebo environment [5], the
robot receives its position from the LiDAR module that
connects to ROS(robotic operating system) for continuous
movement along its x, y axes. In a SITL simulation, the
desired path runs on the computer (either on the same
computer or another computer on the same network). Sensor
data is observed on the computer from the vehicle dynamics
model in the simulator during SITL operations [6].

Fig 4 ROS-Robot Framework

A. Robot Construction

Mobile robots are required to know their locations within the
environment as well as their surroundings so that they can
perform assigned tasks. These issues are investigated within
the context of localization and mapping, a phenomenon in
robotics that analyses the world around a mobile robot. As
shown in (Fig.5) The method is implemented in software that
runs on the(robotic operating system) ROS platform. by using
the stereo depth sensor on the robot, a point cloud about the
obstacles is obtained for simulation and its applications the
robot is equipped with various sensors for obstacle
identification. the robot is equipped with 360 LiDAR shown
in (Fig.6). This method involves the utilisation of remote
sensing techniques, wherein the surrounding environment is
subjected to scanning through the emission of a pulsed laser
beam. Subsequently, the time taken for the reflected signal

from the object to reach the detector is measured. Lidar
sensors possess the ability to identify obstacles throughout a
broad range of visual perception, rendering them highly
suitable for integration into a comprehensive sense and avoid
framework. Additionally, ultrasonic sonic sensors and a
depth camera are also used to determine the presence of
obstacles and its data will be used to plan the optimal path. A
number of filter operations are used to convert this data. The
robot receives the user's intended destination information,
which is used in conjunction with the drone’s position and
map information to construct the intended flight path [6].

Fig. 5 Robot Sensors Publish and Subscribe pattern

Fig 6 Robot Design

B. ROS (robotic operating system)
The Robot Operating System (ROS) comprises a collection of
software libraries and tools that facilitate the development of
robot applications. ROS is an open-source, meta-operating
system designed for robots, encompassing a wide range of
components like as drivers, state-of-the-art algorithms, and a
robust development community. The operating system offers
a range of services and resources, which encompass hardware
abstraction as illustrated in the block diagram (Figure 7),
implementation of frequently utilised functionalities, inter-
process communication through message-passing, and
package management. Additionally, it provides a diverse array
of tools and libraries for the acquisition, construction,
composition, and execution of code across many
computational devices. The Robot Operating System (ROS)
incorporates various modes of communication, encompassing

synchronous Remote Procedure Call (RPC)-style
communication through its service offerings, asynchronous
streaming of data via topics, and data storage on a Parameter
Server. The major objective of the Robot Operating System
(ROS) is to facilitate the reuse of code in the field of robotics
research and development. The Robot Operating System
(ROS) is a distributed framework consisting of a collection of
processes referred to as Nodes. These Nodes allow for the
creation of executables that can be created independently and
have loose coupling during runtime. The aforementioned
processes can be categorised into Packages and Stacks,
facilitating their seamless sharing and distribution. Currently,
the ROS framework is exclusively accessible on operating
systems that are Unix-based. The software designed for the
Robot Operating System (ROS) is consistently subjected to
testing on Ubuntu and Mac OS X operating systems. However,
it is worth noting that the ROS community has actively
contributed to extending support for more Linux platforms like
as Fedora, Gentoo, Arch Linux, and others. [6].

 Fig 7 ROS Interface and Architecture

1) Packages: Packages play a crucial role in the organisation
and structuring of software within the Robot Operating
System (ROS). A package encompasses ROS runtime
processes (referred to as nodes), a library that is
dependent on ROS, datasets, configuration files, or any
other components that are effectively organised in
conjunction. Packages are the most desirable build item
and release item present in ROS framework.

2) Nodes: ROS nodes are essentially just processes that are
communicating with the robot through the use of ROS
application programming interfaces (APIs). It's possible
for a robot to have a lot of nodes to help it with its
computations. ROS client libraries, such as roscpp and
raspy, which will be covered in the next sections, allow
us to establish ROS nodes. In the following parts, we will
discuss:.

3) Topics: ROS topics are one of the ways in which two ROS
Department of Mechanical Engineering nodes can
communicate with one another and exchange ROS
messages with one another. ROS messages are used to
communicate between participants on designated buses
known as topics.

In the search for the optimal course, the academic literature
presents a great deal of different approaches. Every obstacle
in the planning process requires a series of decisions that must

be carried out in sequence throughout the course of time. In
addition, it is absolutely necessary to specify in the planning
formulation how the state shifts as activities are carried out.
Each step of the path-planning procedure takes into account
both the initial state and the destination state [7]. In many
cases, there are two distinct categories of planning issues. The
first factor to consider is whether or not the goal can actually
be accomplished. To do this, you must devise a plan that,
regardless of how effectively it works, will bring the robot to
the desired destination. The second objective is to devise a
plan that is both practicable and effective in enhancing
performance in a particular manner. On the other hand, the
effectiveness of these algorithms was evaluated according to
the following ideal criteria: time required for computation
and distance travelled [8].

In this work, we have used A* algorithm below is the general
working and the basics of the A* algorithm and this is one of
the best path planning algorithms that produced very
satisfactory results.

a) A* Search Algorithm: There is a well-known and

fundamental heuristic method called a star search (A*,
A-star, or A* search [8]. Methodically, (Fig.8) the
algorithm that the A* uses for its optimization. It is
attempted to minimize the function, formalized as f(n) =
g(n) + h(n) taking into account the links between nodes
and edges. In mathematical terms, g(n) is the cost of the
beginning point or node, while h(n) is the cost of the
remaining journey. h(n) hereby constitutes the heuristic
base of the algorithm [8].

Fig. 8 The A* Algorithm flow chart

TABLE I. A* ALGORITHM PARAMETERS IN SIMULATION

Sr
No

ALGORITHM PARAMETERS

1 ⍺ - Safety Distance 0.8m

2 β - Safety Distance 0.7m

3 Velocity safety Distance 1.2m

4 Critical Safety Distance 0.07m

5 Max velocity 0.4m/s

6 Octomap resolution 0.1m

 7 Spherical matrix resolution 6 degrees

The simulation that is performed in the indoor environment
parameter used for the A* parameter is shown in (Table No
1). The UGV parameters of the performed simulation are
shown in (Table No 2), The results of the simulation of the
Special Case 1 are shown in (Table No 3), The results of the
simulation of the Special Case 2 are shown in (table No 4).

TABLE 2 UGV PARAMETERS FOR THE SIMULATION
 Sr

No
UGV PARAMETERS

1 Mass 2kg

2 Radius 35 cm

3 Inertia, ixx 0.0348

5 Inertia, iyy 0.0459

IV. SIMULATION AND ANALYSIS

After getting a broad grasp of how these algorithms function
theoretically, it's crucial to put them to the test on a real robot
to determine their effectiveness and usefulness. As shown in
(Fig.9) the top view of the navigation and mapping sensors
ROS (robotic operating system) includes a real-time physics
simulator environment called Gazebo[9], allowing a robot
model to be thoroughly evaluated before a prototype is built.
In addition, the robot model is integrated into the Gazebo
using a technique known as 'Software in the Loop,' or
SITL[10], which feeds real-life robot data to the physical
environment for simulation.

Fig 9 Robot sensors Navigation and Mapping

 (a)

Special Case 1: The robot in the room with the Gazebo closed
environment and with some static obstacles and the robot is
situated in a particular position here the robot navigates
through the obstacles and intelligent path planning is used to
navigate the robot to find the most efficient path which has
less cost in covering the distance, The (Fig.10) depicts the
navigation mapping and the path taken by the robot. Here we
give the robot a particular target position and the robot first
determines the initial position of the robot in the room and
analyses the target position given to the robot through which

it navigates and reaches its given destination in the most
efficient way possible to reach the point of target. (Table.3)
gives the coordinates of the initial position and goal position
of the robot with its navigational time taken by the robot and
the path length achieved by the robot. The graphical
representation of the statical data of particular case 1 is shown
in (Graph.1) performed in the indoor test environment.

 (b)

 (c)

 (d)
 Fig 10 Test scenarios created in Gazebo simulator

Fig (a) The robot initiates the action by analyzing the initial position of the
robot. Fig.(b) The robot starts the path planning and acts according to the set
path planned by the software. Fig.(c) The robot is in the given path and detects
the object and avoids the object and moves around. Fig. (d) The robot reaches
the final destination.

 TABLE NO 3-PATH LENGTH AND NAVIGATIONAL TIME USING
A*ALGORITHM

 Graph 1 of Path Planning using A* algorithm in case1

TABLE NO 4 PATH LENGTH AND NAVIGATIONAL TIME USING
A* ALGORITHM

 (a)

 (b)

 Special Case 2: As shown below (Fig.11) that the
robot performs path planning with many obstacles as well as
obstacle avoidance, In this simulation environment the robot
is placed between many obstacles that are stationary as well
as some of them are dynamic obstacles the robots need to
analyze the data from the sensors and make the necessary
decision and decide the most efficient path through the
obstacles it helps the robot to reach its target decision in the

best possible way. (Graph.2) below depicts the statistical
information of case 2 of the indoor mapping environment
performed by the robot. (Table.4) shows the results of the
simulation performed by the robot in case 2.

 (c)

Fig 11 Test scenario 2 created in Gazebo simulator
Fig (a) The robot initiates the action by analyzing the initial position of the
robot. Fig (b) The robot starts the path planning and acts according to the set
path planned by the software. Fig (c) The robot is in the given path and detects
the object and avoids the object and moves around. These are some of the
navigation codes used in the ROS environment to plan the path to be executed
to reach from given position of the robot to the target destination. These codes
include various parameters that the robot has to behave accordingly.

 Fig. 12 Path planning using A* algorithm in Case-2

 CONCLUSION
The experiments reveal that the A* algorithm takes the
shortest path, however, it uses significantly more computing
power than the other algorithms. The proposed research was
in the view to develop a autonomous mobile robot system that
is capable enough to smartly navigate to the given goal
position, and efficiently follow the path provided by an
optimized path planning algorithm. This study included that
the A* algorithm is more efficient and better in performance
with the robot in the Gazebo Simulator using the ROS
(robotic operating system) framework, and it was discovered
that the A* algorithm produced better results and computes
the path more quickly in the particular environment in which
the robot was situated in the Gazebo environment.

REFERENCES

[1] Quigley, Morgan, et al. "ROS: an open-source Robot Operating
System." ICRA workshop on open source software. Vol. 3. No. 3.2.
2009.

[2] Jain, Nitin, Amit Kumar Gupta, and Priya Mathur. "Autonomous drone
using ROS for surveillance and 3D mapping using satellite map."
Proceedings of the Second International Conference on Information
Management and Machine Intelligence: ICIMMI 2020. Springer
Singapore, 2021.

[3] Marin-Plaza, Pablo, et al. "Global and local path planning study in a
ROS-based research platform for autonomous vehicles." Journal of
Advanced Transportation 2018 (2018): 1-10.

[4] Quiñonez, Yadira, et al. "Simulation and path planning for quadcopter
obstacle avoidance in indoor environments using the ROS framework."
Trends and Applications in Software Engineering: Proceedings of the
6th International Conference on Software Process Improvement
(CIMPS 2017) 6. Springer International Publishing, 2018.

[5] Post, Mark A., Alessandro Bianco, and Xiu T. Yan. "Autonomous
navigation with ROS for a mobile robot in agricultural fields." 14th
International Conference on Informatics in Control, Automation and
Robotics (ICINCO). 2017.

[6] Korkmaz, Mehmet, and Akif Durdu. "Comparison of optimal path
planning algorithms." 2018 14th International Conference on
Advanced Trends in Radioelecrtronics, Telecommunications and
Computer Engineering (TCSET). IEEE, 2018.

[7] Gawande, S. H. "A combined numerical and experimental study on
metal expansion bellows for STHE." Journal of the Brazilian Society
of Mechanical Sciences and Engineering 40 (2018): 1-14.

[8] Patle, B. K., et al. "Hybrid FA-GA Controller for Path Planning of
Mobile Robot." 2022 International Conference on Intelligent
Controller and Computing for Smart Power (ICICCSP). IEEE, 2022.

[9] Batik Garip, Z., et al. "Path planning for multiple mobile robots using
A* algorithm." Acta Physica Polonica A 132.3 (2017): 685-688.

[10] Zidane, Issa Mtanos, and Khalil Ibrahim. "Wavefront and a-star
algorithms for mobile robot path planning." Proceedings Of The
International Conference On Advanced Intelligent Systems And
Informatics 2017. Springer International Publishing, 2018.

[11] Pagar, N. D., S. S. Gawde, and S. B. Sanap. "Online condition
monitoring system for rotating machine elements using edge
computing." Australian Journal of Mechanical Engineering (2023): 1-
14.

[12] Haldar, Arijit I., and Nitin D. Pagar. "Predictive control of zero moment
point (ZMP) for terrain robot kinematics." Materials Today:
Proceedings 80 (2023): 122-127.

[13] Gawande, S. H., and N. D. Pagar. "A combined numerical and
experimental investigation on the effect of dynamics characteristics of
metal expansion bellows." Journal of Vibration Engineering &
Technologies 6 (2018): 401-416.

[14] Darade, Santosh A., M. Akkalakshmi, and Dr Nitin Pagar. "SDN based
load balancing technique in internet of vehicle using integrated whale
optimization method." AIP Conference Proceedings. Vol. 2469. No. 1.
AIP Publishing, 2022.

[15] Sanap, Sudarshan B., and Nitin D. Pagar. "Structural Integrity
Assessment of the Compensators Used in the Heat Exchangers Under
Combined Angular Movement and Lateral Offset." ASME
International Mechanical Engineering Congress and Exposition. Vol.
86717. American Society of Mechanical Engineers, 2022.

