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ABSTRACT:   Oswatitsch’s  independence  principle  depicts  an  important  role  in  aerothermodynamics.  For  instance,  force               
coefficients  for  a  given  body  shape  which  are  obtained  experimentally  at  a  large  Mach  number  M ∞1  will  be  valid  for  all  larger                        
Mach  numbers  i.e,  M ∞2 >M ∞1 ,  provided  the  flow  is  inviscid  and  perfect  gas.  However,  at  a  high  temperature  above  the  wall,  the                       
Mach  number  begins  to  lose  its  validity.  This  paper  analyzes  a  slender  2D  wedge  numerically  and  theoretically  within  a  range                      
of  2<M  <20  for  certain  aerodynamic  properties:  such  as  pressure  coefficient,  wave-drag  coefficients,  and  shock  wave  angle   ∞                
which  have  been  important  for  the  design  of  high-speed  vehicles.  Computational  studies  were  performed  to  inspect  the  wedge                    
for  Mach  number  independence  through  FLUENT  and  the  applicability  of  the  principle  is  examined  by  considering  an                   
adiabatic  wall  boundary  condition.  Numerical  results  of  C P ,  C D ,  and  shock  wave  angle  show  fairly  good  agreement  with  the                     
theoretical  results.  For  the  slender  wedge  taken  into  account  here  at  high  Mach  numbers,  the  Mach  angle  could  be  of  the                       
same   magnitude   as   the   maximum   deflection   angle,   which   the   flow   undergoes   at   the   body   surface.   
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INTRODUCTION   

  
In  the  vicinity  of  the  Mach  number  independence  principle,  Oswatitsch  involved  the  basic  hypersonic  limiting  process  M  .                  ∞  → ∞  
From  his  analysis,  he  deduced  that  for  a  very  high  Mach  number,  the  drag  coefficient,  pressure  coefficient,  and  shock  wave  patterns                       
on  a  body  are  independent  of  the  value  of  M  .  These  properties  can  be  measured  at  a  lower  Mach  number  for  the  ground  test           ∞                
facilities  in  the  test  section.  Concurrently,  this  result  was  proved  by  Sir  Isaac  Newton  for  his  model  of  rarefied  gas.  However,  the                        
principle  has  been  derived  for  calorically  perfect  gas  and  inviscid  flow  only.  Mathematically  phrased,  the  Mach  number                   
independence  principle  states  that  if  density  and  velocity  are  fixed,  the  solution  within  a  fixed  finite  domain  approaches  a  limiting                      
solution   uniformly   in   the   limit   M  .  ∞  
For  atmospheric  controlled  entry  (re-entry)  type  flight  vehicles  such  as  suborbital,  orbital,  and  super-orbital  vehicles,  various                  
advanced  technologies  have  been  developed  to  perform  experiments  on  the  flight  at  extreme  velocities.  At  present  Lens-X  is  the  only                      
wind  tunnel  with  a  top  speed  of  Mach  30.  However,  atmospheric  entry  interface  velocities  are  on  the  order  of  12Km/s,  i.e.,  in  the                         
range  of  Mach  35.  Given  this,  Oswatitsch’s  independence  principle  plays  a  considerable  role  in  analyzing  the  aerodynamic                   
properties.   
Despite  these  advantages,  the  principle  indicates  that  independence  exists  for  constant  unit  Reynolds  number.  It  is  important  to  note                     
that,  as  in  hypersonic  continuum  flow,  the  Mach  number  independence  principle  is  operative  at  much  lower  speed  ratios  for  blunt                      
bodies   than   for   slender   bodies.     
  

LITERATURE   SURVEY   
  

Several  articles  are  presented  in  the  literature  concerning  the  Mach  number  independence  principle  for  blunt  bodies  but  a  study  on  a                       
slender  body  is  scant.  Scaling  the  data,  Claus  Weiland  et  al.[15]  studied  that  the  Sänger  flow  field  is  more  friction-dominated  than                       
few  fields  of  the  re-entry  vehicles.  Volkmar  Lorenz,  Christian  Mundt,  et  al.  [16]  studied  that  lower  ratios  of  specific  heats  require  a                        
lower  Mach  number  to  achieve  Mach  number  independence.  Sphere  drag  forces  at  subsonic,  transonic,  and  supersonic  velocities                   
were  studied  by  Charters  and  Thomas.  et  al.  [2].  The  Mach  Number  range  was  0.29  to  3.96  and  the  corresponding  Reynolds  Numbers                        
varied  from  9.3  X  10 4  to  1.3  X  10 6 .  For  Reynolds  Numbers  of  the  order  of  magnitude  10 5 .  They  found  no  Reynolds  Number  effect  at                           
supersonic  velocities,  and  they  demonstrated  that  the  drag  coefficient  could  be  correlated  as  a  function  of  Mach  Number  alone.  A.  J.                       
HODGES  [5]  in  his  work  reported  that  drag  coefficients  of  spheres  in  the  air  were  determined  at  Mach  numbers  ranging  from  2.2  to                         
9.7.  The  data  indicates  that  at  Mach  numbers  ranging  from  4  to  10  the  drag  coefficient  of  spheres  in  the  air  does  not  vary                          
significantly.  D.  Kliche  [4]  verified  numerically  that  for  viscous  flow  and  adiabatic  wall,  the  aerodynamic  coefficients  show  the  same                     
behavior  as  for  inviscid  flow.  Hayes  and  Probstein  [7]  stated  that  the  principle  also  holds  for  viscous  flow  and  high-temperature                      
real-gas  effects.  Here,  we  find  that  the  Mach  number  independence  is  defined  for  blunt  bodies  where  an  intense  increase  in  heat  flux                        

  

mailto:Shivashrees2017@gmail.com


  
2   

could  cause  shear  layer  attachment  or  boundary  layer  interaction  which  in  turn  causes  adverse  pressure  gradient  and  which  also                     
increases   the   transition   Reynolds   number   relative   to   that   of   a   sharp-nosed   wedge.   

  
THE   OBJECTIVE   OF   THIS   STUDY   

  
In  this  paper  for  slender  bodies  considered  here,  we  peruse  the  numerical  and  theoretical  results,  giving  insight  into  how  certain                      
properties  such  as  drag  coefficient,  pressure  coefficient,  and  shock  wave  patterns  behave  at  high  Mach  numbers.  The  inviscid  flow                     
past   an   axisymmetric   2D   wedge   is   analyzed   using   oswatitsch’s   independence   principle.   
  

INLET   GEOMETRY   AND   DEFINITIONS     
  

Figure  1  shows  the  plane  view  and  geometric  configuration  of  the  2D  wedge  model  designed  in  CATIAV5.  The  ramp  generates                      
oblique  shock  at  speed  M  >1.  The  shocks  in  turn  deflect  the  freestream  flow  to  a  certain  angle.  The  ramp  is  composed  of  a  width  of      ∞                      
1.004m   inclining   at   4.8   deg.     

  
  
  
  
  
  
  
  
  
  
  
  
  
  

                                                                          Figure   1-Plane   view   of   the   2D   wedge     
GOVERNING   EQUATIONS   

  
Considering  the  hypersonic  limit  M ∞  ⇒  ∞  results  in  a  set  of  mach  number  independent  equations.  To  solve  for  the  hypersonic  flow                        
field  using  the  known  governing  equations  and  the  boundary  conditions  at  the  wall,  we  assume  that  the  location  and  shape  of  the                        
shock  are  known  to  us  and  we  are  intended  to  solve  for  the  flowfield  in  the  shock  layer  or  the  volume  between  shock  and  body.  This                            
technique   is   called   a   shock   fitting   technique.     
  

Rankine-Hugoniot   relations   for   the   oblique   shock   wave   can   be   defined   as,   
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Below  relations  define  what  is  called  Oswatitsch’s  independence  principle,  which  is  obtained  by  limiting  the  Mach  number  in  above                     
relations   to   infinity.   
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Other  flow  parameters  that  are  used  to  find  the  relation  between  shock  angle  ,  and  ramp  angle  ,  i.e.  the  deflection  angle  in               β""     θ""       
terms   of   upstream   Mach   number,   and   specific   heat   ratio   are,  γ  
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NUMERICAL   DETAILS   
  

The  governing  equations  are  numerically  solved  using  a  Two-dimensional  density-based  solver.  An  inviscid  turbulence  model  is                  
applied  to  simulate  the  flow  condition  over  the  wedge  and  the  standard  wall  function  is  used  to  model  the  flow  near  the  region  of  the                           
wall.  These  equations  are  discretized  by  integrating  over  a  rectangular  control  volume.  The  turbulent  intensity  and  turbulent  viscosity                    
ratio  are  set  to  0.5%  and  5  respectively.  The  Courant  number  is  set  to  less  than  one.  The  flux  term  is  solved  with  the  Roe-FDS  scheme.                            
The  spatial  discretization  was  carried  out  using  the  Green-Gauss  Cell-Based  gradient  to  get  better  convergence.  The  1st-order  upwind                    
scheme  is  used  followed  by  the  2nd  order  to  discretize  the  equations  spatially  and  to  get  a  stable  initial  flowfield.  A  second-order                        
implicit  scheme  has  been  used  to  discretize  the  time  derivatives.  The  solution  is  being  initialized  using  hybrid  initialization  based  on                      
the  solving  of  Laplace  equations  to  determine  the  pressure  and  velocity  parameters.  The  calculations  were  run  with  solution  steering                     
on.   The   solution   is   assumed   to   be   converged   when   the   divergence   in   each   cell   falls   well   below   10 -4 .   
  
  
  
  
  
  
  
  

  
  
  

  
  
  
  
  
  
  

    
                                                                                      Figure   2-Computational    Domain   of   the   Wedge     

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

    
  

                                                                            Figure   3-Mesh   distribution   in   the   vicinity   of   the   wedge   
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A. SIZE   OF   THE   COMPUTATIONAL   DOMAIN   
  

The  fluid  domain  is  far  enough  away  from  the  model  to  apply  the  pressure  far-field  boundary  condition  in  Fluent.  The  fluid  domain                        
will  have  a  structured  mesh  with  quad  elements  growing  larger  as  they  are  farther  away  from  the  wedge.  For  Mach  numbers  greater                        
than  one,  the  domain  size  can  be  small  enough  as  the  disturbances  cannot  work  their  way  upstream.  The  near-wall  y+  is  less  than  5                          
to  capture  the  surface  boundary  layer  accurately.  The  pressure  far-field  boundary  condition  is  set  on  the  inflow  surface,  whereas  the                      
pressure   outlet   is   set   on   the   exit   surface.   
  

B. GRID   INDEPENDENCE   TEST   
  

A  high  Mach  number  flow  case  M ∞ =5  and  γ  =  1.4  was  selected  to  show  the  grid-independent  solution.  The  drag  coefficient  C D  was                         
chosen  and  numerical  experiments  were  performed  for  various  grid  sizes.  The  following  three  different  mesh  sizes  have  been  used  to                      
check  the  grid’s  dependence  on  the  average  drag  coefficient  C D .  The  minimum  distance  of  the  first  grid  point  from  the  inlet  wall  is                         
0.001.  The  dependence  of  mesh  size  on  C D  is  presented  in  Table  1.  Looking  at  Table  1,  one  can  find  that  Mesh  B  and  C  produce                            
grid-independent  results  with  the  changes  in  C D  occurring  only  at  the  fifth  decimal  place.  Hence,  Mesh  B  is  chosen  for  further                       
computation   as   it   presents   the   best   flow   field   with   the   least   computational   time.   

  
  
  

          Table   1   
  

  
  
  
  
  
  
  
  
  
  
  

 
 
  
  
 
 

       Figure   4-Grid   independence   study   of   the   wedge     
  

  

Grid   Sensitivity   Grids   (m     n)  ×  Average   drag   coefficient   C D     

Grid   A   (Coarse)   100 120  ×  0.10425   

Grid   B   (Medium)   400 410  ×  0.105007   

Grid   C   (Fine)   
500  16× 7  

0.105016   
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(a)                                                                                             (b)   
  
              Figure   5-   Variation   of   drag   coefficient   (a)   and   pressure   coefficient   with   Mach   number     

  
   RESULTS   AND   DISCUSSIONS   
  

Numerical  simulations  from  Mach  1  to  Mach  20  are  carried  out  using  Fluent  with  the  inviscid  flow  equations  for  the  above-defined                       
wedge.  These  results  will  enable  us  to  evaluate  whether  aerodynamic  coefficients  such  as  pressure  coefficients,  wave  drag                   
coefficients,  and  shock  wave  shapes  become  independent  of  mach  number  at  pressure  and  temperature  of  2.8KPa  and  220K                    
respectively.   
  

1 .     EVALUATION   OF   DRAG   COEFFICIENT   
  

The  drag  is  essentially  a  wave  drag  at  hypersonic  speeds.  The  source  of  wave  drag  is  the  pressure  distribution  exerted  over  the                       
surface  and  is  a  result  of  shock  and  expansion  wave  pattern  in  the  flow  over  the  wedge.  For  cases  other  than  inviscid  flow,  the  value                           
of  friction  drag  is  also  neglected  due  to  an  increase  in  Reynolds  number  with  increasing  Mach  number.  But  the  decrease  in  C f  is                         
more  significant  for  a  turbulent  boundary  layer  than  a  laminar  boundary  layer,  Ref[3].  Here,  as  the  flow  regime  changes  from                      
incompressible  to  transonic  zone,  drag  coefficient  increases  which  are  associated  with  the  drag  divergence  theorem.  Further,  an                   
increase  in  Mach  number  leads  to  a  decrease  in  C D  to  0.0041  till  M  =10,  and  Oswatitsch  principle  is  attained  as  M  becomes  large.               ∞        ∞    
Fig.5a  shows  numerical  and  theoretical  wave-drag  coefficient  as  a  function  of  Mach  number  in  calorically  perfect  air  for  inviscid                     
flow.   Numerical   C D    deviates   from   the   theoretical   C D    by   an   average   of   11%.     
Spheres  and  cones  have  relatively  lesser  drag  due  to  the  three-dimensional  relieving  effect  compared  to  the  slender  body.  The  data                      
for  spheres  from  Ref[5]  indicates  that  at  Mach  Numbers  ranging  from  4  to  20  the  drag  coefficient  does  not  vary  significantly.                       
Whereas  for  slender  configurations  with  a  pointed  nose,  like  the  hypersonic  cruise  vehicle  Sänger  Ref[15],  this  occurs  in  principle  at                      
higher  Mach  numbers  where  viscous  effects  play  a  major  role.  It  should  be  noted  that  the  discontinuity  increases  the  drag  for  a  very                         
thin   body,   but   that   for   thicker   bodies,   this   is   not   so.     
  
  

2.     EVALUATION   OF   PRESSURE   COEFFICIENT   
  

In  aerodynamics,  pressure  distributions  are  usually  quoted  in  terms  of  the  pressure  coefficient.  Approximated  linearized  theory  can                   
be  utilized  to  define  C P ,  as  waves  of  finite  strength  are  not  taken  into  account.  For  small  perturbations,  C P  is  directly  proportional  to                         

the  surface  inclination  of  the  wall  concerning  the  freestream  which  only  holds  for  the  slender  two-dimensional  body  were   is                    θ""   
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relatively  small.  Fig.5b  shows  numerical  and  theoretical  pressure  coefficient  as  a  function  of  mach  number.  From  fig.5b  it  can  be                      
deduced  that  for  supersonic  flow,  as  the  M   increases  C P  decreases  linearly  till  M  =9.  The  largest  gradient  of  17.5%  is  in  the  region         ∞       ∞           
of  M=5.  For  higher  Mach  numbers  the  pressure  coefficient  does  not  change  more  than  0.5%.  Hence  again,  Oswatitsch’s  Mach                     
number  independence  principle  is  impressively  confirmed  at  M . =10.  The  results  of  the  theoretical  calculation  for  the  pressure         ∞           
distributions  about  wedges  are  relatively  independent  of  the  Mach  number  and  Reynolds  number  in  the  range  tested.  It  can  be                      
observed   from   fig.5b,   that   Newtonian   theory   is   preferable   for   predicting   the   pressure   on   axisymmetric   slender   bodies.   
  

  

3.    EVALUATION   OF   THE   OBLIQUE   SHOCK   WAVE   ON   A   WEDGE   
  

  

The  mean  molecular  collision  time  in  the  gas  is  much  greater  than  the  transit  time  of  the  gas  passing  through  the  shock  wave,  and  the                           
vector  velocity  of  each  molecule  differs  but  negligibly  from  the  free  stream  velocity.  From  this,  we  may  conclude  that  the                      
independence  principle  applies  also  to  the  structures  of  the  shock  wave,  Ref[1].   Fig.7  shows  the  variation  of  shock  shapes  with  Mach                       
number  at  inviscid  flow.  The  independence  principle  appears  at  a  relatively  higher  Mach  number  for  slender  bodies  in  comparison                     
with  blunt  ones  since  the  shock  angle  is  very  high.  This  analogy  can  be  visualized  using  Fig.6.  Where  the  Oswatitsch  principle  is                        
approached  at  M  =7  for  the  wedge.  Numerical  and  theoretical  results  show  that  the   shock  shapes  vary  with  little  difference  at  higher    ∞                    

Mach  number.  From  the  figure,  it  can  be  noted  that  there   is  a  sharp  decline  in   as  the  Mach  number  increases  to  5.                  β""         
Correspondingly ,   Conditions  immediately  behind  the  shock  may  be  considered  to  serve  as  boundary  conditions  for  the  flow  field.                    
Thus,  a  flow  solution  obtained  for  one  sufficiently  large  value  of  M  will  serve  for  another  large  value  of  M  if  P  and  velocity  are             ∞         ∞   ∞     
the   same.   With   the   assumption   of   the   uniqueness   of   this   type   of   flow   solution,   the   independence   principle   follows   immediately.   

  
  
  
  
  
  
  
  

  
 
  
 
 

    
  
  
  
  
  

    
  

Figure   6-Variation   of   shock   wave   angle( )   with   Mach   number(M  )  β ∞  
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    Figure   7-Static   pressure   contours   of   mach   numbers   2,3,4,5,6,8,10,   and   20   

  
  

CONCLUSION   
  

The  applicability  of  Oswatitsch’s  independence  principle  has  been  seen  in  R-V  type  flight  vehicles  and  CAV  type  flight  vehicles.  We                      
consider  here  especially  the  case  of  two-dimensional  slender  bodies.  Explicit  relations  are  defined  by  Oswatitsch,  which  connect  the                    
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shock  properties  to  the  body  shape,  and  are  available  only  for  the  two-dimensional  inviscid  ramp  flow.  In  a  large  Mach  number  range                        
pressure   coefficient,   drag   coefficient,   and   shock   wave   shapes   vary   only   weakly   across   the   oblique   shocks.     
➢ For  C P ,  the  numerical  and  theoretical  results  show  that  the  pressure  distribution  about  the  2D  wedge  is  relatively                    
independent   of   Mach   number   in   the   range   2<M  <20,   accordingly   differ   insignificantly   from   newton's   theory.  ∞  
➢ For   C D ,   the   results   indicate   that   independence   exists   for   inviscid   flow.     
➢ Investigations   on   shock   wave   angle   have   indicated   the   actual   validity   of   Oswatitsch’s   Mach   number   independence   principle.   
On  the  flip  side,  the  viscosity  will  change  the  value  of  wave  drag  coefficient,  pressure  coefficient,  and  influence  the  shock  wave                       
shape  at  high  Mach  numbers.  Nevertheless,  they  do  not  fully  prove  the  validity  of  the  principle  in  the  case  of  viscous  flow  and  at                          
moderately  low  Reynolds  numbers  on  slender  bodies,  the  effects  of  the  displacement  thickness  of  the  boundary  layer  may  be  large                      
enough   to   invalidate   the   independence   principle.   
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